欢乐赛车

欢乐赛车 > 应用 > 嵌入式
[导读]芯片设计老生常谈,我国的芯片设计较其它发达国家而言,略显劣势。为增进全民对于芯片设计的了解,本文将对系统级芯片设计中的多领域集成策略予以讲解。如果你对本文涉及的芯片设计内容存在一定兴趣,请继续往下阅读哦。

芯片设计老生常谈,我国的芯片设计较其它发达国家而言,略显劣势。为增进全民对于芯片设计的了解,本文将对系统级芯片设计中的多领域集成策略予以讲解。如果你对本文涉及的芯片设计内容存在一定兴趣,请继续往下阅读哦。

1.jpg

请注意,本文仅为上篇,如果你想了解更多系统级芯片设计多领域集成策略,请关注下篇文章哦。

大型多领域模拟混合信号(AMS)系统在电子行业中越来越常见,此类设计必须同时满足进度和准确度要求,从而给设计工程师带来了极大的挑战。本文介绍了一种结合自上而下和自下而上的方法来实现 “中间相遇”,可有效地克服这些挑战。

大型多领域AMS系统在电子行业中越来越常见,由于这些集成器件的设计中包括了RF器件、模拟器件、存储器、定制化数字电路以及数字标准单元IP,全球工程师在设计AMS系统时也面临着各种各样的问题。要想成功地完成这些设计必须结合自上而下和自下而上的方法,最后实现 “中间相遇”,并且需要采用多个领域的方法。Cadence的Virtuoso平台用高级定制化设计(ACD)方法来开发适用于基于领域的设计流程蓝图并解决这些挑战。

设计可预见性

可预见性是ACD方法的重要特性。可预测性主要包括两方面:从设计开始便一直满足进度要求从而尽快出带(tap-out);满足性能要求,实现一次性设计成功。

image1.jpg

为满足设计进度,要求设计过程必须足够快,同时能支持彻底、全面的仿真和物理设计。设计过程包括多个任务,而且当前多数芯片都包含来自不同设计领域的多个模块。因此,必须在设计中纳入尽可能多的模块,并尽可能地并行地执行更多任务,并在设计过程中尽可能多地使用顶层IP。

在仿真和物理设计中均使用自上而下的设计方法可加快设计进程,它将从高级设计到具体的晶体管级设计的多个抽象层结合在一起,来支持一种混合层设计方案,完成测试前的所有细节设计。这种方法可利用顶层及相关信息进行模块设计,随后在顶层环境中对模块进行再验证。

另一方面,芯片必须具有足够的准确度以实现设计性能要求。芯片的准确度与某些基本设计数据有关,如支持精确仿真的器件模型和支持互连、物理验证和分析的技术文件。此外,这种方法还使用了灵敏度高、结构严谨的测试芯片,以验证设计工艺的可行性以及相应工艺设计套件(PDK)的准确度。为了支持某种特殊的设计风格,设计小组通常要在PDK中增加额外组件,同时还必须扩展器件模型,结合或增加临界条件、统计建模或设计团队所需的其它方法。

芯片准确度数据在整个设计过程和详细的晶体管级的分析中都起着作用,包括版图提取等详细的晶体管层分析。这些构成了抽象链(abstracTIon chain)的较低层,反过来又支持将这些结果定标到更高抽象层。这就是高级定制化方法中的自下而上设计部分。

自上而下和自下而上的设计进程可以并行展开,产生“中间相遇”的设计方法。正是这种“中间相遇”法同时满足了设计速度和芯片准确度要求,最后实现进度的可预测性并获得一次性设计成功。

集成流程中的任何小毛病都会影响可预见性。通常在规划进度时我们都假设集成过程中不会出现问题,但实际上如果我们不注意整体的设计方法,问题是必然会发生的,并且进而影响到进度,最终导致无法正确预估设计的进度或性能。

从整个设计项目来看,这些问题往往会使局面彻底失控。更糟糕的是,这种情况通常发生在出带前的最后三周内。设计流程中最难的一部分便是将芯片集成在一起进行验证。由于多数设计都十分庞大,因此不允许出现一丝错误,由不同团队独立负责的模块设计必须能迅速而准确地集成在一起。然而,这通常很难实现。更常见的情况是在即准备出带前,工程师在数据库上陷入永无止境的设计迭代循环中,进度被无限期地拖延。通常,芯片设计在未经正确验证便开始出带,然后不可避免地造成返工,从而进一步推迟产品推出时间,也将影响赢利预期。

此外,如果设计中使用了前几代设计中的IP,或从大型SoC设计中产生派生产品,情况将会更为复杂化。通常这样做的原因可能是为了满足额外的市场要求、使用了不同晶圆厂,或考虑到性能和成本的原因而换用了下一代工艺技术。在定制化设计领域中,“IP复用”一词往往会引发争议,因为IP移植/修改比纯粹的数字设计涉及到更为全面设计。不过,这种设计其本身具有高度可用性,且对IP移植或修改工作来说也是一个十分有意义开始。这突显了集成的问题:如果某个特殊模块在首次设计中难于集成,它会给下一个派生产品和再次集成增加设计困难。因此,下次集成时除了会碰到首次集成的同样问题外,这些增加的设计困难也会引发新的问题。因此,给这些支持未来在再利用和集成的设计选择恰当的设计过程十分关键。

以上便是此次小编带来的“芯片设计”相关内容,通过本文,希望大家对本文探讨的内容具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

换一批

延伸阅读

[嵌入式] 你不知道的芯片设计,芯片设计中的功耗+优化

你不知道的芯片设计,芯片设计中的功耗+优化

芯片设计具备举足轻重的地位,是各大芯片设计企业和国家的重点项目。对于芯片设计,其包含众多内容,如芯片设计之正反向设计等。在本文中,主要为大家讲解功耗估计、优化技术在芯片设计中扮演的角色以及发挥的作用。如果你对本文内容不了解疑惑村子啊一定兴趣......

关键字:芯片设计 功耗 优化

[嵌入式] 欢乐赛车芯片设计实例篇,DC-DC开关电源管理芯片设计(下篇)

芯片设计实例篇,DC-DC开关电源管理芯片设计(下篇)

芯片设计是国家的重点项目,同时芯片设计也是我国摆脱进口依赖与自主独立的关键。本文对于芯片设计的讲解承接于《芯片设计实例篇,DC-DC开关电源管理芯片设计(上篇)》一文,如果你未曾阅读上篇芯片设计相关内容,不妨从前文开始阅读哦。。。。。。。

关键字:芯片设计 DC-DC 电源

[嵌入式] 芯片设计实例篇,DC-DC开关电源管理芯片设计(上篇)

芯片设计实例篇,DC-DC开关电源管理芯片设计(上篇)

芯片设计至关重要,同时芯片设计也是国家重点发展项目。因此对于芯片设计,我们应该具备一定了解。往期文章中,小编曾对芯片设计的基础内容予以介绍。本文中,为增进大家对芯片设计的理解,特带来一篇芯片设计实例应用。......

关键字:芯片设计 DC-DC 电源

[半导体] 浅谈芯片设计流程

浅谈芯片设计流程

芯片是今天中国最热门的话题,随着国际环境的变化,芯片设计和自主创新的重要意义越来越凸显。在数字化、互联网和移动互联网的时代,主要的计算任务运行在CPU处理器上;而大数据、人工智能、5G时代,主要的计算任务运行在GPU、DSP、人工智能专用处。。。。。。

关键字:芯片设计 集成电路 IC

[嵌入式] 芯片设计基础篇,芯片设计之反向设计最全解析

芯片设计基础篇,芯片设计之反向设计最全解析

与芯片设计强国相比,中国的芯片设计能力无疑相对弱小。但近年来,我国的芯片设计正处于上升阶段。为增进大家对芯片设计流程的了解,本文特地带来芯片设计之反向设计过程的介绍,正式内容如下。......

关键字:芯片设计 反向设计 设计流程

[嵌入式] 芯片设计实战篇,射频识别芯片设计的实现与优化

芯片设计实战篇,射频识别芯片设计的实现与优化

芯片设计是每个国家的发展重点之一,而壮大中国芯片设计行业将有利于降低我国对国外芯片的依赖程度。再往期文章中,小编曾对芯片设计的正反向流程、芯片设计前景等内容进行过相关介绍。本文中,小编将为大家介绍带来芯片设计实战篇——射频识别芯片设计中的时......

关键字:芯片设计 射频识别芯片 优化

[嵌入式] 芯片设计的保障者,芯片设计之可测试设计技术详解

芯片设计的保障者,芯片设计之可测试设计技术详解

芯片设计是全球比较重视的行业之一,可以说芯片设计一定程度上决定了国家的生产制造水平。芯片设计通常包含多个阶段,每个芯片设计阶段的重点均有所不同。为保证芯片设计过程中的可靠性,可测试设计技术显得尤为重要。因此,本文将对芯片设计中的这项技术加以......

关键字:芯片设计 可测试设计技术 芯片

[嵌入式] 芯片设计实例篇,吃透低功率CMOS无线射频芯片设计过程

芯片设计实例篇,吃透低功率CMOS无线射频芯片设计过程

芯片设计具备很强的现实意义,因此芯片设计成为诸多朋友的就业方向或工作内容之一。对于芯片设计内容的学习,往往需要学习者具备一定的耐心、毅力。为进一步提高大家的芯片设计能力,本文将为大家讲解低功率CMOS无线射频芯片设计过程,一起来了解下吧。......

关键字:芯片设计 CMOS 无线射频

[嵌入式] 芯片设计实例,芯片设计之时钟芯片低功耗设计

芯片设计实例,芯片设计之时钟芯片低功耗设计

芯片设计过程通常较为复杂、繁琐,往期文章中,小编曾宏观介绍过芯片设计流程,但并未涉及特定功能的芯片设计过程。本文中,为增进大家对芯片设计的了解,特此带来时钟芯片设计研究文章。此外,本文着重点在于介绍时钟芯片低功耗设计研究,如果你对这部分内容......

关键字:芯片设计 时钟芯片 低功耗

[嵌入式] 芯片设计进阶篇,芯片设计之调试设计

芯片设计进阶篇,芯片设计之调试设计

芯片设计对很多朋友而言并非陌生,芯片设计由正向设计和反向设计组成。其中,芯片设计又包含调试设计。为增进大家对芯片设计的了解,本文将对芯片设计之调试设计详加介绍,一起来了解下吧。。。。。。。

关键字:芯片设计 调试设计 正向设计

[单片机新闻] 获CEVA许可WiSig Networks可开发出eNB-IoT系统级芯片

获CEVA许可WiSig Networks可开发出eNB-IoT系统级芯片

近日WiSig Networks获得CEVA授权许可,通过使用蜂窝物联网技术以及CEVA-Dragonfly NB2 IP解决方案,完成芯片的开发。此芯片是符合3GPP Rel。14标准的eNB-IoT系统级芯片(SoC)。 。。。。。。

关键字:eNB-IoT系统级芯片 物联网技术 DSP处理器

[技术专访] 人工智能为半导体业开启最佳机遇,芯片设计验证工具链将发生哪些变化?

人工智能为半导体业开启最佳机遇,芯片设计验证工具链将发生哪些变化?

普华永道调研显示,人工智能将成为下一个推动半导体行业持续十年增长的催化剂;麦肯锡咨询认为,人工智能正在为半导体行业开启数十年来最佳商机。人工智能可以让半导体公司从技术堆栈中获取总价值的40~50%,而EDA工具作为半导体行业的基础,也必将在......

关键字:人工智能 EDA Mentor 西门子 芯片设计

[嵌入式] 芯片设计系列篇(三),芯片设计之反向设计“后续故事”

芯片设计系列篇(三),芯片设计之反向设计“后续故事”

芯片设计流程并非十分复杂,主要包含正反向设计两大步骤。在前面的两篇文章里,小编对芯片设计之反向设计的前四大步骤已做过详细阐述。而本文中,将对剩余的几大反向芯片设计步骤加以介绍,以帮助大家更好掌握芯片设计。......

关键字:芯片设计 反向设计 步骤

[嵌入式] 芯片设计系列篇(二),芯片设计之四大反向设计步骤

芯片设计系列篇(二),芯片设计之四大反向设计步骤

对于芯片设计,小编在前面的文章中做过一些介绍,而这些关于芯片设计的介绍基于芯片反向设计。本文中,为保证大家对可完全理解芯片设计环节,将对反向芯片设计的四大流程加以介绍。希望大家在本文中,能获取一些新的思考。......

关键字:芯片设计 反向设计 步骤

[嵌入式] 芯片设计系列篇(一),反向芯片设计超详细介绍

芯片设计系列篇(一),反向芯片设计超详细介绍

芯片设计是常聊话题,其中芯片设计包含正向设计和反向设计。本文对芯片设计的讲解,主要在于介绍芯片反向设计。希望本文对反向设计的详细讲解,能帮助大家更好理解芯片设计的流程。。。。。。。

关键字:芯片设计 反向设计 正向设计

我 要 评 论

网友评论

技术子站

更多

项目外包

推荐博客

中兴彩票app 江苏快三质合走势图 916彩票 567彩票 360彩票